9. GREENHOUSE GAS EMISSIONS

This chapter describes the existing greenhouse gas emission in the General Plan Planning Area.

9.1.1.1 Terminology

The following are definitions for terms used throughout this section.

- **Greenhouse gases (GHG).** Gases in the atmosphere that absorb infrared light, thereby retaining heat in the atmosphere and contributing to a greenhouse effect.
- Global warming potential (GWP). Metric used to describe how much heat a molecule of a GHG absorbs relative to a molecule of carbon dioxide (CO₂) over a given period of time (20, 100, and 500 years). CO₂ has a GWP of 1.
- Carbon dioxide-equivalent (CO₂e). The standard unit to measure the amount of GHGs in terms of the amount of CO₂ that would cause the same amount of warming. CO₂e is based on the GWP ratios between the various GHGs relative to CO₂.
- MTCO₂e. Metric ton of CO₂e.
- MMTCO₂e. Million metric tons of CO₂e.

9.1 GREENHOUSE GASES AND CLIMATE CHANGE

Scientists have concluded that human activities are contributing to global climate change by adding large amounts of heat-trapping gases, known as GHGs, to the atmosphere. The primary source of these GHGs is fossil fuel use. The Intergovernmental Panel on Climate Change (IPCC) has identified four major GHG water vapor, carbon dioxide (CO₂), methane (CH₄), and ozone (O₃)—that are likely cause of an increase in global average temperatures observed in the 20th and 21st centuries. Other GHGs identified by the IPCC that contribute to global warming to a lesser extent are nitrous oxide (N₂O), sulfur hexafluoride (SF₆), hydrofluorocarbons, perfluorocarbons, and chlorofluorocarbons.^{1,2,3}

The major GHGs are briefly described as follows:

¹ Intergovernmental Panel on Climate Change, 2001. Third Assessment Report: Climate Change 2001, New York: Cambridge University Press.

 $^{^{2}}$ Water vapor (H₂O) is the strongest GHG and the most variable in its phases (vapor, cloud droplets, ice crystals). However, water vapor is not considered a pollutant because it is considered part of the feedback loop of changing radiative forcing rather than a primary cause of change.

³ Black carbon contributes to climate change both directly, by absorbing sunlight, and indirectly, by depositing on snow (making it melt faster) and by interacting with clouds and affecting cloud formation. Black carbon is the most strongly lightabsorbing component of particulate matter (PM) emitted from burning fuels such as coal, diesel, and biomass. Reducing black carbon emissions globally can have immediate economic, climate, and public health benefits. California has been an international leader in reducing emissions of black carbon, with close to 95 percent control expected by 2020 due to existing programs that target reducing PM from diesel engines and burning activities (California Air Resources Board, 2017, March 14. Short-Lived Climate Pollutant Reduction Strategy, https://www.arb.ca.gov/cc/shortlived/shortlived.htm). However, State and national GHG inventories do not include black carbon due to ongoing work resolving the precise global warming potential of black carbon. Guidance for CEQA documents does not yet include black carbon.

- Carbon dioxide (CO₂) enters the atmosphere through the burning of fossil fuels (oil, natural gas, and coal), solid waste, trees and wood products, and respiration, and also as a result of other chemical reactions (e.g., manufacture of cement). Carbon dioxide is removed from the atmosphere (sequestered) when it is absorbed by plants as part of the biological carbon cycle.
- Methane (CH₄) is emitted during the production and transport of coal, natural gas, and oil. Methane emissions also result from livestock and other agricultural practices and from the decay of organic waste in municipal landfills and water treatment facilities.
- Nitrous oxide (N₂O) is emitted during agricultural and industrial activities as well as during combustion of fossil fuels and solid waste.

GHGs are dependent on the lifetime, or persistence, of the gas molecule in the atmosphere. Some GHGs have a stronger greenhouse effect than others. These are referred to as high GWP gases. The GWP of applicable GHG emissions are shown in Table 9-1. The GWP is used to convert GHGs to CO_2 -equivalence (CO_2e) to show the relative potential that different GHGs have to retain infrared radiation in the atmosphere and contribute to the greenhouse effect. For example, under IPCC's Fourth Assessment Report (AR4) GWP values for methane (CH_4), a project that generates 10 metric tons (MT) of CH_4 would be equivalent to 250 MT of CO_2 .⁴

GHGs	Second Assessment Report (SAR) Global Warming Potential Relative to CO2ª	Fourth Assessment Report (AR4) Global Warming Potential Relative to CO ₂ ª	Fifth Assessment Report (AR5) Global Warming Potential Relative to CO2ª
Carbon Dioxide (CO ₂)	1	1	1
Methane ^b (CH ₄)	21	25	28
Nitrous Oxide (N ₂ O)	310	298	265

TABLE 9-1 GHG EMISSIONS AND THEIR RELATIVE GLOBAL WARMING POTENTIAL COMPARED TO CO₂

Notes:

a. Based on 100-year time horizon of the GWP of the air pollutant compared to CO₂.

b. The methane GWP includes direct effects and indirect effects due to the production of tropospheric ozone and stratospheric water vapor. The indirect effect due to the production of CO₂ is not included.

Sources: Intergovernmental Panel on Climate Change, 1995, Second Assessment Report: Climate Change 1995; Intergovernmental Panel on Climate Change. 2007. Fourth Assessment Report: Climate Change 2007. New York: Cambridge University Press; Intergovernmental Panel on Climate Change. 2014. Fifth Assessment Report: Climate Change 2014. New York: Cambridge University Press.

9.1.1 CALIFORNIA'S GHG SOURCES AND RELATIVE CONTRIBUTION

In 2019, the statewide GHG emissions inventory was updated for 2000 to 2017 emissions using the GWPs in IPCC's AR4.⁵ Based on these GWPs, California produced 424.10 MMTCO₂e GHG emissions in 2017. California's transportation sector was the single largest generator of GHG emissions, producing 40.1

 $^{^{4}}$ CO₂-equivalence is used to show the relative potential that different GHGs have to retain infrared radiation in the atmosphere and contribute to the greenhouse effect. The global warming potential of a GHG is also dependent on the lifetime, or persistence, of the gas molecule in the atmosphere.

⁵ Methodology for determining the statewide GHG inventory is not the same as the methodology used to determine statewide GHG emissions under Assembly Bill 32 (2006).

percent of the state's total emissions. Industrial sector emissions made up 21.1 percent, and electric power generation made up 14.7 percent of the state's emissions inventory. Other major sectors of GHG emissions include commercial and residential (9.7 percent), agriculture and forestry (7.6 percent) high GWP (4.7 percent), and recycling and waste (2.1 percent).⁶

California's GHG emissions have followed a declining trend since 2007. In 2017, emissions from routine GHG emitting activities statewide were 424 MMTCO₂e, 5 MMTCO₂e lower than 2016 levels. This represents an overall decrease of 14 percent since peak levels in 2004 and 7 MMTCO₂e below the 1990 level and the state's 2020 GHG target. During the 2000 to 2017 period, per capita GHG emissions in California have continued to drop from a peak in 2001 of 14.0 MTCO₂e per capita to 10.7 MTCO₂e per capita in 2017, a 24 percent decrease. Overall trends in the inventory also demonstrate that the carbon intensity of California's economy (the amount of carbon pollution per million dollars of gross domestic product (GDP)) is declining, representing a 41 percent decline since the 2001 peak, while the state's GDP has grown 52 percent during this period. For the first time since California started to track GHG emissions, California uses more electricity from zero-GHG sources (hydro, solar, wind, and nuclear energy).⁷

9.1.2 HUMAN INFLUENCE ON CLIMATE CHANGE

For approximately 1,000 years before the Industrial Revolution, the amount of GHGs in the atmosphere remained relatively constant. During the 20th century, however, scientists observed a rapid change in the climate and the quantity of climate change pollutants in the Earth's atmosphere that is attributable to human activities. The amount of CO₂ in the atmosphere has increased by more than 35 percent since preindustrial times and has increased at an average rate of 1.4 parts per million per year since 1960, mainly due to combustion of fossil fuels and deforestation.⁸ These recent changes in the quantity and concentration of climate change pollutants far exceed the extremes of the ice ages, and the global mean temperature is warming at a rate that cannot be explained by natural causes alone. Human activities are directly altering the chemical composition of the atmosphere through the buildup of climate change pollutants.⁹ In the past, gradual changes in the earth's temperature changed the distribution of species, availability of water, etc. However, human activities are accelerating this process so that environmental impacts associated with climate change no longer occur in a geologic time frame but within a human lifetime.¹⁰

Like the variability in the projections of the expected increase in global surface temperatures, the environmental consequences of gradual changes in the Earth's temperature are hard to predict. Projections of climate change depend heavily upon future human activity. Therefore, climate models are

⁶ California Air Resources Board (CARB). 2019, August 26. 2019 Edition California Greenhouse Gas Inventory for 2000-2017: By Category as Defined in the 2008 Scoping Plan. https://www.arb.ca.gov/cc/inventory/data/data.htm.

⁷ California Air Resources Board. 2019, August 26. California Greenhouse Emissions for 2000 to 2017: Trends of Emissions and Other Indicators. https://www.arb.ca.gov/cc/inventory/data/data.htm, accessed November 21, 2019.

⁸ Intergovernmental Panel on Climate Change, 2007. *Fourth Assessment Report: Climate Change 2007*, New York: Cambridge University Press.

⁹ California Climate Action Team, 2006. Climate Action Team Report to Governor Schwarzenegger and the Legislature.

¹⁰ Intergovernmental Panel on Climate Change, 2007. *Fourth Assessment Report: Climate Change 2007*, New York: Cambridge University Press.

based on different emission scenarios that account for historical trends in emissions and on observations of the climate record that assess the human influence of the trend and projections for extreme weather events. Climate-change scenarios are affected by varying degrees of uncertainty—for example, on the magnitude of the trends for:

- Warmer and fewer cold days and nights over most land areas.
- Warmer and more frequent hot days and nights over most land areas.
- An increase in frequency of warm spells/heat waves over most land areas.
- An increase in frequency of heavy precipitation events (or proportion of total rainfall from heavy falls) over most areas.
- Larger areas affected by drought.
- Intense tropical cyclone activity increases.
- Increased incidence of extreme high sea level (excluding tsunamis).

9.1.3 POTENTIAL CLIMATE CHANGE IMPACTS FOR CALIFORNIA

Observed changes over the last several decades across the western United States reveal clear signs of climate change. Statewide average temperatures increased by about 1.7 degrees Fahrenheit (°F) from 1895 to 2011, and warming has been greatest in the Sierra Nevada.¹¹ The years from 2014 through 2016 have shown unprecedented temperatures with 2014 being the warmest.¹² By 2050, California is projected to warm by approximately 2.7°F above 2000 averages, a threefold increase in the rate of warming over the last century. By 2100, average temperatures could increase by 4.1 to 8.6°F, depending on emissions levels.¹³

In California and western North America, observations of the climate have shown: 1) a trend toward warmer winter and spring temperatures; 2) a smaller fraction of precipitation falling as snow; 3) a decrease in the amount of spring snow accumulation in the lower and middle elevation mountain zones; 4) advanced shift in the timing of snowmelt of 5 to 30 days earlier in the spring; and 5) a similar shift (5 to 30 days earlier) in the timing of spring flower blooms.¹⁴ Overall, California has become drier over time, with five of the eight years of severe to extreme drought occurring between 2007 and 2016, and unprecedented dry years in 2014 and 2015. Statewide precipitation has become increasingly variable

¹¹ California Climate Change Center, 2012. Our Changing Climate 2012: Vulnerability and Adaptation to the Increasing Risks from Climate Change in California.

¹² Office of Environmental Health Hazards Assessment, 2018. Indicators of Climate Change in California.

https://oehha.ca.gov/media/downloads/climate-change/report/2018caindicatorsreportmay2018.pdf, accessed November 21, 2019.

¹³ California Climate Change Center, 2012. Our Changing Climate 2012: Vulnerability and Adaptation to the Increasing Risks from Climate Change in California.

¹⁴ California Climate Action Team, 2006. Climate Action Team Report to Governor Schwarzenegger and the Legislature.

from year to year, with the driest consecutive four years occurring from 2012 to 2015.¹⁵ Wildfire and heat are discussed further in Chapter 18, Wildfire and Chapter 19, Climate Change.

According to the California Climate Action Team—a committee of state agency secretaries and the heads of agencies, boards, and departments, led by the Secretary of the California Environmental Protection Agency—even if actions could be taken to immediately curtail climate change emissions, the potency of emissions that have already built up, their long atmospheric lifetimes (see Table 9.2-1), and the inertia of the Earth's climate system could produce as much as 0.6 degrees Celsius (°C) (1.1°F) of additional warming. Consequently, some impacts from climate change are now considered unavoidable. Global climate change risks to California are described below and shown in Table 9-2.

Impact Category	Potential Risks
Public Health Impacts	Heat waves will be more frequent, hotter, and longer
	Poor air quality made worse
	Higher temperatures increase ground-level ozone (i.e., smog) levels
	Decreasing Sierra Nevada snow pack
Mater Deseures Imports	Challenges in securing adequate water supply
Water Resource Impacts	Potential reduction in hydropower
	Loss of winter recreation
	Increasing temperature
	Increasing threats from pests and pathogens
Agricultural Impacts	Expanded ranges of agricultural weeds
	Declining productivity
	Irregular blooms and harvests
	Accelerated sea level rise
Coastal Sea Level Impacts	Increasing coastal floods
Coastal Sea Level Impacts	Shrinking beaches
	Worsened impacts on infrastructure
	Increased risk and severity of wildfires
	Lengthening of the wildfire season
	Movement of forest areas
Forest and Biological	Conversion of forest to grassland
Resource Impacts	Declining forest productivity
	Increasing threats from pest and pathogens
	Shifting vegetation and species distribution
	Altered timing of migration and mating habits
	Loss of sensitive or slow-moving species

TABLE 9-2 SUMMARY OF GHG EMISSIONS RISK TO CALIFORNIA

Sources: California Climate Change Center, 2012, Our Changing Climate 2012: Vulnerability and Adaptation to the Increasing Risks from Climate Change in California. California Energy Commission, 2006. Our Changing Climate: Assessing the Risks to California, 2006 Biennial Report, CEC-500-2006-077. California Energy Commission, 2009. The Future Is Now: An Update on Climate Change Science, Impacts, and Response Options for California. CEC-500-2008-0077. California Natural Resources Agency, 2014. Safeguarding California: Reducing Climate Risk, An Update to the 2009 California Climate Adaptation Strategy.

¹⁵ Office of Environmental Health Hazards Assessment, 2018. Indicators of Climate Change in California. https://oehha.ca.gov/media/downloads/climate-change/report/2018caindicatorsreportmay2018.pdf, accessed April 3, 2019.

Water Resources Impacts. By late this century, all projections show drying, and half of the projections suggest 30-year average precipitation will decline by more than 10 percent below the historical average. Even in projections with relatively little or no decline in precipitation, central and southern parts of the state are expected to be drier from the warming effects alone because the spring snowpack will melt sooner, and the moisture in soils will evaporate during long dry summer months.¹⁶

Wildfire Risks. Earlier snowmelt, higher temperatures, and longer dry periods over a longer fire season will directly increase wildfire risk. Indirectly, wildfire risk will also be influenced by potential climate-related changes in vegetation and ignition potential from lightning. Human activities will continue to be the biggest factor in ignition risk. The number of large fires statewide is estimated to increase by 58 percent to 128 percent above historical levels by 2085. Under the same emissions scenario, estimated burned area will increase by 57 percent to 169 percent, depending on location.¹⁷

Health Impacts. Many of the gravest threats to public health in California stem from the increase of extreme conditions, principally more frequent, more intense, and longer heat waves. Particular concern centers on the increasing tendency for multiple hot days in succession, and simultaneous heat waves in several regions throughout the state. Public health could also be affected by climate change impacts on air quality, food production, the amount and quality of water supplies, energy pricing and availability, and the spread of infectious diseases. Higher temperatures also increase ground-level ozone levels. Furthermore, wildfires can increase particulate air pollution in the major air basins of California.¹⁸

Increase Energy Demand. Increases in average temperature and higher frequency of extreme heat events combined with new residential development across the state will drive up the demand for cooling in the increasingly hot and longer summer season and decrease demand for heating in the cooler season. Warmer, drier summers also increase system losses at natural gas plants (reduced efficiency in the electricity generation process at higher temperatures) and hydropower plants (lower reservoir levels). Transmission of electricity will also be affected by climate change. Transmission lines lose 7 percent to 8 percent of transmitting capacity in high temperatures while needing to transport greater loads. This means that more electricity needs to be produced to make up for the loss in capacity and the growing demand.¹⁹

¹⁶ California Council on Science and Technology, 2012. California's Energy Future: Portraits of Energy Systems for Meeting Greenhouse Gas Reduction Targets. https://ccst.us/wp-content/uploads/2012ghg.pdf, accessed November 21, 2019.

¹⁷ California Council on Science and Technology, 2012. California's Energy Future: Portraits of Energy Systems for Meeting Greenhouse Gas Reduction Targets. https://ccst.us/wp-content/uploads/2012ghg.pdf, accessed November 21, 2019.

¹⁸ California Council on Science and Technology, 2012. California's Energy Future: Portraits of Energy Systems for Meeting Greenhouse Gas Reduction Targets. https://ccst.us/wp-content/uploads/2012ghg.pdf, accessed November 21, 2019.

¹⁹California Council on Science and Technology, 2012. California's Energy Future: Portraits of Energy Systems for Meeting Greenhouse Gas Reduction Targets. https://ccst.us/wp-content/uploads/2012ghg.pdf, accessed November 21, 2019.

9.2 **REGULATORY FRAMEWORK**

This section summarizes key federal, State, and regional regulations and programs related to GHG emissions. There are no local regulations regarding GHG emissions for the General Plan Planning Area.

9.2.1 FEDERAL REGULATIONS

The United States Environmental Protection Agency (USEPA) announced on December 7, 2009 that GHG emissions threaten the public health and welfare of the American people and that GHG emissions from on-road vehicles contribute to that threat. The USEPA's final findings respond to the 2007 U.S. Supreme Court decision that GHG emissions fit within the Clean Air Act definition of air pollutants. The findings did not themselves impose any emission reduction requirements, but allowed the USEPA to finalize the GHG standards proposed in 2009 for new light-duty vehicles as part of the joint rulemaking with the Department of Transportation.²⁰

To regulate GHGs from passenger vehicles, the USEPA issued an endangerment finding.²¹ The finding identifies emissions of six key GHGs—CO₂, CH₄, N₂O, HCFCs, PFCs, and SF₆— that have been the subject of scrutiny and intense analysis for decades by scientists in the United States and around the world. The first three are applicable to the City's communitywide GHG emissions inventory because they constitute the majority of GHG emissions.

9.2.1.1 US Mandatory Report Rule for Greenhouse Gases (2009)

In response to the endangerment finding, the USEPA issued the Mandatory Reporting of GHG Rule that requires substantial emitters of GHG emissions (large stationary sources, etc.) to report GHG emissions data. Facilities that emit 25,000 MTCO₂e per year are required to submit an annual report.

9.2.1.2 Update to Corporate Average Fuel Economy Standards (2021 to 2027)

The federal government issued new Corporate Average Fuel Economy (CAFE) standards in 2012 for model years 2017 to 2025, which required a fleet average of 54.5 miles per gallon in 2025. However, on March 30, 2020, the USEPA finalized an updated CAFE and GHG emissions standards for passenger cars and light trucks and established new standards, covering model years 2021 through 2026, known as The Safer Affordable Fuel Efficient (SAFE) Vehicles Final Rule for Model Years 2021-2026. These updated standards diverge from California's Advanced Clean Car Regulation. Nonetheless, a consortium of automakers and California have agreed on a voluntary framework to reduce emissions that can serve as an alternative path forward for clean vehicle standards nationwide. Automakers who agreed to the framework are Ford,

²⁰ U.S. Environmental Protection Agency, 2009. EPA: Greenhouse Gases Threaten Public Health and the Environment. https://archive.epa.gov/epapages/newsroom_archive/newsreleases/08d11a451131bca585257685005bf252.html, accessed November 21, 2019.

²¹ U.S. Environmental Protection Agency, 2009. EPA: Endangerment and Cause or Contribute Findings for Greenhouse Gases Under Section 202(a) of the Clean Air Act. https://www.epa.gov/ghgemissions/endangerment-and-cause-or-contribute-findingsgreenhouse-gases-under-section-202a-clean, accessed November 21, 2019.

Honda, BMW of North America, and Volkswagen Group of America. The framework supports continued annual reductions of vehicle greenhouse gas emissions through the 2026 model year, encourages innovation to accelerate the transition to electric vehicles, and provides industry the certainty needed to make investments and create jobs. This commitment means that the auto companies party to the voluntary agreement will only sell cars in the United States that meet these standards.²²

9.2.1.3 USEPA Regulation of Stationary Sources under the Clean Air Act (Ongoing)

Pursuant to its authority under the Clean Air Act, the EPA has been developing regulations for new, large, stationary sources of emissions, such as power plants and refineries. Under former President Obama's 2013 Climate Action Plan, the EPA was directed to develop regulations for existing stationary sources as well. On June 19, 2019, the EPA issued the final Affordable Clean Energy (ACE) rule which became effective on August 19, 2019. The ACE rule was crafted under the direction of President Trump's Energy Independence Executive Order. It officially rescinds the Clean Power Plan rule issued during the Obama Administration and sets emissions guidelines for states in developing plans to limit CO₂ emissions from coal-fired power plants.

9.2.2 STATE REGULATIONS

Current State of California guidance and goals for reductions in GHG emissions are generally embodied in Executive Order S-03-05, AB 32, SB 32, Executive Order B-30-15, and SB 375. These are summarized as follows:

9.2.2.1 Executive Order S-03-05

Executive Order S-03-05, signed June 1, 2005, set the following GHG reduction targets for the state:

- 2000 levels by 2010.
- 1990 levels by 2020.
- 80 percent below 1990 levels by 2050.

9.2.2.2 Assembly Bill 32

Also known as the Global Warming Solutions Act (2006), AB 32 was signed August 31, 2006, in order to reduce California's contribution of GHG emissions. AB 32 follows the 2020 tier of emissions reduction targets established in Executive Order S-03-05. Under AB 32, California Air Resources Board (CARB) prepared the 2008 Climate Change Scoping Plan, the 2014 Climate Change Scoping Plan, and the 2017 Climate Change Scoping Plan, which is discussed below.

²² California Air Resources Board. California and major automakers reach groundbreaking framework agreement on clean emission standards. Accessed March 29, 2020. https://ww2.arb.ca.gov/news/california-and-major-automakers-reach-groundbreaking-framework-agreement-clean-emission

CARB 2008 Scoping Plan

The 2008 Scoping Plan, adopted by CARB on December 11, 2008, identified that GHG emissions in California are anticipated to be 596 MMTCO₂e in 2020. In December 2007, CARB approved a 2020 emissions limit of 427 MMTCO₂e (471 million tons) for the state. To effectively implement the emissions cap, AB 32 directed CARB to establish a mandatory reporting system to track and monitor GHG emissions levels for large stationary sources that generate more than 25,000 MTCO₂e per year, prepare a plan demonstrating how the 2020 deadline can be met, and develop appropriate regulations and programs to implement the plan by 2012.

First Update to the Scoping Plan

CARB completed a five-year update to the 2008 Scoping Plan, as required by AB 32. The First Update to the Scoping Plan, adopted May 22, 2014, highlights California's progress toward meeting the near-term 2020 GHG emission reduction goal defined in the 2008 Scoping Plan. As part of the update, CARB recalculated the 1990 GHG emission levels with the updated AR4 GWPs, and the 427 MMTCO₂e 1990 emissions level and 2020 GHG emissions limit, established in response to AB 32, are slightly higher at 431 MMTCO₂e.²³ As identified in the Update to the Scoping Plan, California is on track to meet the goals of AB 32. The update also addresses the state's longer-term GHG goals in a post-2020 element. The post-2020 element provides a high-level view of a long-term strategy for meeting the 2050 GHG goals, including a recommendation for the State to adopt a midterm target. According to the Update to the Scoping Plan, local government reduction targets should chart a reduction trajectory that is consistent with or exceeds the trajectory created by statewide goals.²⁴ CARB identified that reducing emissions to 80 percent below 1990 levels will require a fundamental shift to efficient, clean energy in every sector of the economy. Progressing toward California's 2050 climate targets will require significant acceleration of GHG reduction rates. Emissions from 2020 to 2050 will have to decline several times faster than the rate needed to reach the 2020 emissions limit.²⁵

9.2.2.3 Executive Order B-30-15

Executive Order B-30-15, signed April 29, 2015, sets a goal of reducing GHG emissions within the state to 40 percent of 1990 levels by year 2030. Executive Order B-30-15 also directs CARB to update the Scoping Plan to quantify the 2030 GHG reduction goal for the state and requires state agencies to implement measures to meet the interim 2030 goal as well as the long-term goal for 2050 in Executive Order S-03-05. It also requires the Natural Resources Agency to conduct triennial updates of the California adaption

²³ California Air Resources Board, 2014. First Update to the Climate Change Scoping Plan: Building on the Framework, Pursuant to AB 32, The California Global Warming Solutions Act of 2006. https://ww3.arb.ca.gov/cc/scopingplan/2013_update/ first_update_climate_change_scoping_plan.pdf, accessed November 21, 2019.

²⁴ California Air Resources Board, 2014. First Update to the Climate Change Scoping Plan: Building on the Framework, Pursuant to AB 32, The California Global Warming Solutions Act of 2006. https://ww3.arb.ca.gov/cc/scopingplan/2013_update/ first_update_climate_change_scoping_plan.pdf, accessed November 21, 2019.

²⁵ California Air Resources Board, 2014. First Update to the Climate Change Scoping Plan: Building on the Framework, Pursuant to AB 32, The California Global Warming Solutions Act of 2006. https://ww3.arb.ca.gov/cc/scopingplan/2013_update/ first_update_climate_change_scoping_plan.pdf, accessed November 21, 2019.

strategy, Safeguarding California, in order to ensure climate change is accounted for in state planning and investment decisions.

9.2.2.4 Senate Bill 32 and Assembly Bill 197

In September 2016, SB 32 and AB 197 were signed into law, making the Executive Order goal for year 2030 into a statewide mandated legislative target. AB 197 established a joint legislative committee on climate change policies and requires the CARB to prioritize direct emissions reductions rather than the market-based cap-and-trade program for large stationary, mobile, and other sources.

2017 Climate Change Scoping Plan Update

Executive Order B-30-15 and SB 32 required CARB to prepare another update to the Scoping Plan to address the 2030 target for the state. On December 14, 2017, CARB adopted the 2017 Climate Change Scoping Plan Update (2017 Scoping Plan) to address the 2030 target for the State. The 2017 Scoping Plan establishes a new emissions limit of 260 MMTCO₂e for the year 2030, which corresponds to a 40 percent decrease in 1990 levels by 2030.²⁶

California's climate strategy will require contributions from all sectors of the economy, including enhanced focus on zero- and near-zero emission (ZE/NZE) vehicle technologies; continued investment in renewables, such as solar roofs, wind, and other types of distributed generation; greater use of low carbon fuels; integrated land conservation and development strategies; coordinated efforts to reduce emissions of short-lived climate pollutants (i.e., methane, black carbon, and fluorinated gases); and an increased focus on integrated land use planning to support livable, transit-connected communities and conserve agricultural and other lands. Requirements for GHG reductions at stationary sources complement local air pollution control efforts by the local air districts to tighten criteria air pollutants and toxic air contaminants (TACs) emissions limits on a broad spectrum of industrial sources. Major elements of the 2017 Scoping Plan framework include:

- Implementing and/or increasing the standards of the Mobile Source Strategy, which include increasing ZE vehicle buses and trucks.
- Low Carbon Fuel Standard (LCFS), with an increased stringency (18 percent by 2030).
- Implementation of SB 350, which expands the Renewables Portfolios Standard (RPS) to 50 percent RPS and doubles energy efficiency savings by 2030.
- California Sustainable Freight Action Plan, which improves freight system efficiency, and utilizes near-zero emissions technology, and deployment of ZE vehicle trucks.
- Implementing the proposed Short-Lived Climate Pollutant Strategy, which focuses on reducing methane and hydrofluorocarbon emissions by 40 percent and anthropogenic black carbon emissions by 50 percent by year 2030.

²⁶ California Air Resources Board, 2017. California's 2017 Climate Change Scoping Plan: The Strategy for Achieving California's 2030 Greenhouse Gas Target. https://www.arb.ca.gov/cc/scopingplan/2030sp_pp_final.pdf, accessed November 21, 2019.

- Continued implementation of SB 375.
- Post-2020 Cap-and-Trade Program that includes declining caps.
- Development of a Natural and Working Lands Action Plan to secure California's land base as a net carbon sink.

In addition to the statewide strategies listed above, the 2017 Climate Change Scoping Plan also identified local governments as essential partners in achieving the State's long-term GHG reduction goals and recommended local actions to reduce GHG emissions; for example, statewide targets of no more than 6 MTCO₂e or less per capita by 2030 and 2 MTCO₂e or less per capita by 2050. CARB recommends that local governments evaluate and adopt robust and quantitative locally appropriate goals that align with the statewide per capita targets and the State's sustainable development objectives and develop plans to achieve the local goals. The statewide per capita goals were developed by applying the percent reductions necessary to reach the 2030 and 2050 climate goals (i.e., 40 percent and 80 percent, respectively) to the State's 1990 emissions limit established under AB 32. For CEQA projects, CARB states that lead agencies have the discretion to develop evidenced-based numeric thresholds (mass emissions, per capita, or per service population)—consistent with the Scoping Plan and the State's long-term GHG goals. To the degree a project relies on GHG mitigation measures, CARB recommends that lead agencies prioritize on-site design features that reduce emissions, especially from vehicle miles traveled (VMT), and direct investments in GHG reductions within the project's region that contribute potential air quality, health, and economic co-benefits. Where further project design or regional investments are infeasible or not proven to be effective, CARB recommends mitigating potential GHG impacts through purchasing and retiring carbon credits.

The Scoping Plan scenario is set against what is called the business-as-usual (BAU) yardstick—that is, what the GHG emissions would look like if the State did nothing at all beyond the policies that are already required and in place to achieve the 2020 limit, as shown in Table 9-3. It includes the existing renewables requirements, advanced clean cars, the "10 percent" LCFS, and the SB 375 program for more vibrant communities, among others. However, it does not include a range of new policies or measures that have been developed or put into statute over the past two years. Also shown in the table, the known commitments are expected to result in emissions that are 60 MMTCO₂e above the target in 2030. If the estimated GHG reductions from the known commitments are not realized due to delays in implementation or technology deployment, the post-2020 Cap-and-Trade Program would deliver the additional GHG reductions in the sectors it covers to ensure the 2030 target is achieved.

Modeling Scenario	2030 GHG Emissions MMTCO ₂ e		
Reference Scenario (Business-as-Usual)	389		
With Known Commitments	320		
2030 GHG Target	260		
Gap to 2030 Target with Known Commitments	60		

Source: California Air Resources Board, 2017. California's 2017 Climate Change Scoping Plan: The Strategy for Achieving California's 2030 Greenhouse Gas Target, https://www.arb.ca.gov/cc/scopingplan/2030sp_pp_final.pdf, accessed on February 28, 2020.

Table 9-4 provides GHG emissions by sector, for 1990, and the range of GHG emissions for each sector estimated for 2030, and the percent change compared to 1990 levels.

	1990	Plan Ranges	% Change
Scoping Plan Sector	MMTCO ₂ e	MMTCO₂e	from 1990
Agricultural	26	24-25	-8% to -4%
Residential and Commercial	44	38-40	-14% to -9%
Electric Power	108	30-53	-72% to -51%
High GWP	3	8-11	267% to 367%
Industrial	98	83-90	-15% to -8%
Recycling and Waste	7	8-9	14% to 29%
Transportation (including TCU)	152	103-111	-32% to -27%
Net Sink ^a	-7	TBD	TBD
Sub Total	431	294-339	-32% to -21%
Cap-and-Trade Program	NA	24-79	NA
Total	431	260	-40%

TABLE 9-4 2017 CLIMATE CHANGE SCOPING PLAN EMISSIONS BY SECTOR TO ACHIEVE THE 2030 GHG TARGET

Notes: TCU = Transportation, Communications, and Utilities; TBD = To Be Determined.

a. Work is underway through 2017 to estimate the range of potential sequestration benefits from the natural and working lands sector.

Source: California Air Resources Board. 2017, California's 2017 Climate Change Scoping Plan: The Strategy for Achieving California's 2030 Greenhouse Gas Target. https://www.arb.ca.gov/cc/scopingplan/2030sp_pp_final.pdf, accessed on February 28, 2020.

9.2.2.5 Senate Bill 375

In 2008, SB 375, the Sustainable Communities and Climate Protection Act, was adopted to connect the GHG emissions reductions targets established in the 2008 Scoping Plan for the transportation sector to local land use decisions that affect travel behavior. Its intent is to reduce GHG emissions from light-duty trucks and automobiles (excludes emissions associated with goods movement) by aligning regional long-range transportation plans, investments, and housing allocations to local land use planning to reduce VMT and vehicle trips. Specifically, SB 375 required CARB to establish GHG emissions reduction targets for each of the 18 metropolitan planning organizations (MPOs). The Association of Monterey Bay Area Governments (AMBAG) is the MPO for the Monterey Bay region. Pursuant to the recommendations of the Regional Transportation Advisory Committee (RTAC), CARB adopted per capita reduction targets for each of the MPOs rather than a total magnitude reduction target.

2017 Update to the SB 375 Targets

CARB is required to update the targets for the MPOs every eight years. CARB adopted revised SB 375 targets for the MPOs in March 2018.²⁷ The updated targets become effective on October 1, 2018. The targets consider the need to further reduce VMT, as identified in the 2017 Scoping Plan Update (for SB 32), while balancing the need for additional and more flexible revenue sources to incentivize positive planning and action toward sustainable communities. Like the 2010 targets, the updated SB 375 targets are in units of percent per capita reduction in GHG emissions from automobiles and light trucks relative to 2005; this excludes reductions anticipated from implementation of state technology and fuels strategies, and any potential future state strategies, such as statewide road user pricing.

The proposed targets call for greater per-capita GHG emission reductions from SB 375 than are currently in place, which for 2035 translate into proposed targets that either match or exceed the emission reduction levels in the MPOs' currently adopted SCS to achieve the SB 375 targets. For next SCS update, CARB's updated targets for the MTC/ABAG region are a 10 percent per capita GHG reduction in 2020 from 2005 levels (compared to 7 percent under the 2010 target) and a 19 percent per capita GHG reduction in 2035 from 2005 levels (compared to the 2010 target of 15 percent). CARB foresees that the additional GHG emissions reductions in 2035 may be achieved from land use changes, transportation investment, and technology strategies.²⁸

9.2.2.6 Transportation Sector Regulations

Assembly Bill 1493

Also known as Pavley I, AB 1493 is a clean-car standard that reduces GHG emissions from new passenger vehicles (light-duty auto to medium-duty vehicles) from 2009 through 2016 and is anticipated to reduce GHG emissions from new passenger vehicles by 30 percent in 2016. California implements the Pavley I standards through a waiver granted to California by the USEPA. In 2012, the USEPA issued a Final Rulemaking that sets even more stringent fuel economy and GHG emissions standards for model years 2017 through 2025 light-duty vehicles (see also the discussion on the update to the CAFE standards under the heading for Federal Regulations, above). In January 2012, CARB approved the Advanced Clean Cars program (formerly known as Pavley II) for model years 2017 through 2025. The program combines the control of smog, soot, and GHGs with requirements for greater numbers of ZE vehicles into a single package of standards. Under California's Advanced Clean Car program, by 2025, new automobiles will emit 34 percent less global warming gases and 75 percent less smog-forming emissions.²⁹

²⁷ California Air Resources Board, 2018. Updated Final Staff Report: Proposed Update to the SB 375 Greenhouse Gas Emissions Reduction Targets.

²⁸ California Air Resources Board, 2018. Updated Final Staff Report: Proposed Update to the SB 375 Greenhouse Gas Emissions Reduction Targets.

²⁹ See also the discussion on the update to the CAFE standards under Federal Laws, above. In January 2012, CARB approved the Advanced Clean Cars program (formerly known as Pavley II) for model years 2017 through 2025. The program combines the control of smog, soot and global warming gases and requirements for greater numbers of zero-emission vehicles into a single package of standards. Under California's Advanced Clean Car program, by 2025, new automobiles will emit 34 percent fewer global warming gases and 75 percent fewer smog-forming emissions.

Executive Order S-01-07

On January 18, 2007, the state set a new Low Carbon Fuel Standard (LCFS) for transportation fuels sold in California. Executive Order S-01-07 sets a declining standard for GHG emissions measured in CO₂e gram per unit of fuel energy sold in California. The LCFS requires a reduction of 2.5 percent in the carbon intensity of California's transportation fuels by 2015 and a reduction of at least 10 percent by 2020. The LCFS applies to refiners, blenders, producers, and importers of transportation fuels and would use market-based mechanisms to allow these providers to choose how they reduce emissions during the "fuel cycle," using the most economically feasible methods.

Executive Order B-16-2012

Signed on March 23, 2012, the State required CARB, the California Energy Commission, the Public Utilities Commission, and other relevant agencies to work with the Plug-in Electric Vehicle Collaborative and the California Fuel Cell Partnership to establish benchmarks to accommodate ZE vehicles in major metropolitan areas, including infrastructure to support them (e.g., electric vehicle charging stations). The executive order also directed the number of ZE vehicles in California's state vehicle fleet to increase through the normal course of fleet replacement so that at least 10 percent of fleet purchases of light-duty vehicles are zero-emission by 2015 and at least 25 percent by 2020. The executive order also stabled a target for the transportation sector of reducing GHG emissions 80 percent below 1990 levels.

9.2.2.7 Renewable Energy Regulations

Senate Bills 1078, 107, and X1-2, and Executive Order S-14-08

A major component of California's Renewable Energy Program is the renewable portfolios standard (RPS) established under Senate Bills 1078 (Sher) and 107 (Simitian). Under the RPS, certain retail sellers of electricity were required to increase the amount of renewable energy each year by at least 1 percent in order to reach at least 20 percent by December 30, 2010. Executive Order S-14-08, signed in November 2008, expanded the RPS to 33 percent renewable power by 2020. This standard was adopted by the legislature in 2011 (SB X1-2). Renewable sources of electricity include wind, small hydropower, solar, geothermal, biomass, and biogas. The increase in renewable sources for electricity production will decrease indirect GHG emissions from development projects because electricity production from renewable sources is generally considered carbon neutral.

Senate Bill 350

Signed in September 2015, SB 350 establishes tiered increases the RPS to 40 percent by 2024, 45 percent by 2027, and 50 percent by 2030. SB 350 also set a new goal to double the energy efficiency savings in electricity and natural gas through energy efficiency and conservation measures.

Senate Bill 100

On September 10, 2018, Governor Brown signed SB 100, which raises California's RPS requirements to 60 percent by 2030, with interim targets, and 100 percent by 2045. The bill establishes a state policy that eligible renewable energy resources and zero-carbon resources supply 100 percent of all retail sales of

electricity to California end-use customers and 100 percent of electricity procured to serve all state agencies by December 31, 2045. Under the bill, the state cannot increase carbon emissions elsewhere in the western grid or allow resource shuffling to achieve the 100 percent carbon-free electricity target.

Executive Order B-55-18

Executive Order B-55-18, signed September 10, 2018, sets a goal "to achieve carbon neutrality as soon as possible, and no later than 2045, and achieve and maintain net negative emissions thereafter." Executive Order B-55-18 directs CARB to work with relevant state agencies to ensure future Scoping Plans identify and recommend measures to achieve the carbon neutrality goal. The goal of carbon neutrality by 2045 is in addition to other statewide goals, meaning not only should emissions be reduced to 80 percent below 1990 levels by 2050, but that, by no later than 2045, the remaining emissions should be offset by equivalent net removals of CO_2e from the atmosphere, including through sequestration in forests, soils, and other natural landscapes.

9.2.2.8 Energy Efficiency Regulations

California Building Code: Building Energy Efficiency Standards

Energy conservation standards for new residential and non-residential buildings were adopted by the California Energy Resources Conservation and Development Commission (now the CEC) in June 1977 (Title 24, Part 6, of the California Code of Regulations). Title 24 requires the design of building shells and building components to conserve energy. The standards are updated periodically to allow for consideration and possible incorporation of new energy efficiency technologies and methods. The 2019 Building Energy Efficiency Standards, which were adopted on May 9, 2018, went into effect starting January 1, 2020.³⁰ The 2019 standards move toward cutting energy use in new homes by more than 50 percent and will require installation of solar photovoltaic systems for single-family homes and multifamily buildings of three stories and less. The 2019 standards focus on four key areas: 1) smart residential photovoltaic systems; 2) updated thermal envelope standards (preventing heat transfer from the interior to exterior and vice versa); 3) residential and nonresidential ventilation requirements; and 4) nonresidential lighting requirements.³¹ Under the 2019 standards, and single-family homes will be 7 percent more energy efficient. When accounting for the electricity generated by the solar photovoltaic system, single-family homes would use 53 percent less energy compared to homes built to the 2016 standards.³²

³⁰ California Energy Commission, 2015. 2016 Building Energy and Efficiency Standards Frequently Asked Questions. http://www.energy.ca.gov/title24/2016standards/rulemaking/documents/2016_Building_Energy_Efficiency_Standards_FAQ.pdf, accessed November 21, 2019.

³¹ California Energy Commission, 2018. Energy Commission Adopts Standards Requiring Solar Systems for New Homes, First in Nation. News Release.

³² California Energy Commission, 2018. 2019 Building Energy and Efficiency Standards Frequently Asked Questions. http://www.energy.ca.gov/title24/2019standards/documents/2018_Title_24_2019_Building_Standards_FAQ.pdf, accessed November 21, 2019.

California Building Code: CALGreen

On July 17, 2008, the California Building Standards Commission adopted the nation's first green building standards. The California Green Building Standards Code (24 California Code of Regulations, Part 11, known as "CALGreen") was adopted as part of the California Building Standards Code. CALGreen established planning and design standards for sustainable site development, energy efficiency (in excess of the California Energy Code requirements), water conservation, material conservation, and internal air contaminants.³³ The CEC adopted the 2019 CALGreen on May 9, 2018, became effective January 1, 2020.

2006 Appliance Efficiency Regulations

Adopted by the California Energy Commission on October 11, 2006, the 2006 Appliance Efficiency Regulations (Title 20, California Code of Regulations, Sections 1601 through 1608) were approved by the California Office of Administrative Law on December 14, 2006. The regulations include standards for both federally regulated appliances and non–federally regulated appliances. Though these regulations are now often viewed as "business-as-usual," they exceed the standards imposed by all other states and they reduce GHG emissions by reducing energy demand.

9.2.2.9 Solid Waste Regulations

Solid waste indirectly contributes to GHG emissions through decomposition of degradable organic carbon, resulting in the production of methane (CH_4) and biogenic CO_2 .

Assembly Bill 939

California's Integrated Waste Management Act of 1989 (AB 939, Public Resources Code 40050 *et seq.*) set a requirement for cities and counties throughout the state to divert 50 percent of all solid waste from landfills by January 1, 2000, through source reduction, recycling, and composting. In 2008, the requirements were modified to reflect a per capita requirement rather than tonnage. To help achieve this, the act requires that each city and county prepare and submit a source reduction and recycling element. AB 939 also established the goal for all California counties to provide at least 15 years of ongoing landfill capacity.

Assembly Bill 341

AB 341 (Chapter 476, Statutes of 2011) increased the statewide goal for waste diversion to 75 percent by 2020 and requires recycling of waste from commercial and multifamily residential land uses. Section 5.408 of CALGreen also requires that at least 65 percent of the nonhazardous construction and demolition waste from nonresidential construction operations be recycled and/or salvaged for reuse.

³³ The green building standards became mandatory in the 2010 edition of the code.

Assembly Bill 1327

The California Solid Waste Reuse and Recycling Access Act (AB 1327, Public Resources Code Sections 42900 *et seq.*) requires areas to be set aside for collecting and loading recyclable materials in development projects. The act required the California Integrated Waste Management Board to develop a model ordinance for adoption by any local agency requiring adequate areas for collection and loading of recyclable materials as part of development projects. Local agencies are required to adopt the model or an ordinance of their own.

Assembly Bill 1826

AB 1826, signed on October 2014, requires businesses to recycle their organic waste on and after April 1, 2016, depending on the amount of waste they generate per week. This law also requires that on and after January 1, 2016, local jurisdictions across the state implement an organic waste recycling program to divert organic waste generated by businesses, including multifamily residential dwellings with five or more units. Organic waste means food waste, green waste, landscape and pruning waste, nonhazardous wood waste, and food-soiled paper waste that is mixed in with food waste.

9.2.2.10 Water Efficiency Regulations

Water uses indirectly generates GHG emissions as a result of the embodied energy associated with pumping water, generating wastewater, and fugitive GHG emissions from processing wastewater.

SBX7-7

The 20x2020 Water Conservation Plan was issued by the Department of Water Resources (DWR) in 2010 pursuant to Senate Bill 7, which was adopted during the 7th Extraordinary Session of 2009 to 2010 and therefore dubbed "SBX7-7". SBX7-7 mandated urban water conservation and authorized the DWR to prepare a plan implementing urban water conservation requirements (20x2020 Water Conservation Plan). In addition, it required agricultural water providers to prepare agricultural water management plans, measure water deliveries to customers, and implement other efficiency measures. SBX7-7 requires urban water providers to adopt a water conservation target of 20 percent reduction in urban per capita water use by 2020 compared to 2005 baseline use.

Assembly Bill 1881

The Water Conservation in Landscaping Act of 2006 (AB 1881) requires local agencies to adopt the updated DWR model ordinance or equivalent. AB 1881 also requires the Energy Commission, in consultation with the department, to adopt, by regulation, performance standards and labeling requirements for landscape irrigation equipment, including irrigation controllers, moisture sensors, emission devices, and valves to reduce the wasteful, uneconomic, inefficient, or unnecessary consumption of energy or water.

9.2.2.11 Short-Lived Climate Pollutants

Senate Bill 1383

On September 19, 2016, the Governor signed SB 1383 to supplement the GHG reduction strategies in the Scoping Plan to consider short-lived climate pollutants, including black carbon and CH₄. Black carbon is the light-absorbing component of fine particulate matter produced during incomplete combustion of fuels. SB 1383 requires the State board, no later than January 1, 2018, to approve and begin implementing that comprehensive strategy to reduce emissions of short-lived climate pollutants to achieve a reduction in methane by 40 percent, hydrofluorocarbon gases by 40 percent, and anthropogenic black carbon by 50 percent below 2013 levels by 2030. The bill also establishes targets for reducing organic waste in landfills. On March 14, 2017, CARB adopted the "Final Proposed Short-Lived Climate Pollutant Strategy," which identifies the State's approach to reducing anthropogenic and biogenic sources of short-lived climate pollutants. Anthropogenic sources of black carbon include on- and off-road transportation, residential wood burning, fuel combustion (charbroiling), and industrial processes. According to CARB, ambient levels of black carbon in California are 90 percent lower than in the early 1960s, despite the tripling of diesel fuel use.³⁴ In-use on-road rules are expected to reduce black carbon emissions from on-road sources by 80 percent between 2000 and 2020.

9.2.3 **REGIONAL REGULATIONS**

9.2.3.1 AMBAG Metropolitan Transportation Plan and Sustainable Communities Strategy

AMBAG is the MPO for the Monterey Bay area. MBAG coordinates the development of the Metropolitan Transportation Plan (MTP)/ Sustainable Communities Strategy (SCS) with the Regional Transportation Planning Agencies (RTPAs) (San Benito County Council of Governments, the Santa Cruz County Regional Transportation Commission, and the Transportation Agency for Monterey County), transit providers (San Benito County Local Transit Authority, Monterey Salinas Transit, and Santa Cruz METRO Transit District), the MBARD. AMBAG also coordinates transportation planning and programming activities with the three counties and eighteen local jurisdictions within the tri-county Monterey Bay Region. The intent of the SCS is to reduce GHG emissions from light-duty trucks and automobiles by aligning regional long-range transportation plans, investments, and housing allocations to local land use planning to reduce VMT and vehicle trips in the Bay Area. AMBAG adopted the 2040 MTP/SCS on June 13, 2019. The MTP/SCS complies with SB 375, which mandates both a reduction in GHG emissions from passenger vehicles and the provision of adequate housing for the region's 24-year projected population growth. However, based on the most recent Senate Bill 150 report released by CARB, California has not met the GHG reductions expected under SB 375 for 2020.³⁵

³⁴ California Air Resources Board, 2017. Short-Lived Climate Pollutant Reduction Strategy. https://www.arb.ca.gov/cc/shortlived/meetings/03142017/final_slcp_report.pdf, accessed November 21, 2019.

³⁵ California Air Resources Board, 2018, November. 2018 Progress Report, California's Sustainable Communities and Climate Protection Act. https://ww2.arb.ca.gov/sites/default/files/2018-11/Final2018Report_SB150_112618_02_Report.pdf

9.3 **EXISTING CONDITIONS**

9.3.1 2015 COMMUNITY-WIDE GHG INVENTORY

AMBAG assisted the City of Hollister with preparation of the 2005, 2010 and the City's 2015 communitywide GHG emissions inventory through AMBAG's Energy Watch Program. As shown in Table 9-6, in 2015 the City generated 104,090 MTCO₂e, which represented a 15 percent reduction from the 2005 baseline, which was consistent with State goals or the period from 2005 to 2020. This decrease from the 2005 emissions baseline is primarily the result of emission reductions across the residential and nonresidential energy sectors, attributed, in part, by an increase in renewable energy.³⁶ Reductions in these sectors were partially offset by increases in the transportation sector, meaning that Hollister experienced an increase in VMT during the period between 2005 and 2015, despite the fact that the City used less GHGproducing energy in their homes and other buildings.

Sector	2005	2015	Change from 2005	Percent Change from 2005
Residential	36,211	31,418	-4,793	-13%
Nonresidential (Commercial/Industrial)	53,564	26,024	-27,540	-51%
Transportation	22,582	34,412	11,830	52%
Solid Waste	894	877	-17	20%
Wastewater	9,445	11,359	1,914	-2
Total	122,695	104,090	-18,605	-15%
Estimated Population	NA	36,291	NA	NA
Per Capita Emissions	NA	2.9	NA	NA

TABLE 9-6 CITY OF HOLLISTER GREENHOUSE GAS EMISSIONS INVENTORY

Note: NA: not available.

 The transportation sector analysis includes emissions from vehicle use on local roads within Hollister's jurisdictional boundaries. It is not an origindestination based analysis; and therefore, does not include travel from land uses within the City outside of the City's jurisdictional boundaries. Additionally, this methodology includes through-traffic not associated with land uses in the City.

Source: Association of Monterey Bay Area Governments (AMBAG), Energy Watch Program. 2018, May. City of Hollister, 2015 Community-Wide Greenhouse Gas Inventory.

³⁶ Association of Monterey Bay Area Governments (AMBAG), Energy Watch Program. 2018, May. City of Hollister, 2015 Community-Wide Greenhouse Gas Inventory.

9.4 IMPLICATIONS FOR THE GENERAL PLAN UPDATE

Based on information contained in this chapter, the General Plan Update process should address the following issues:

- Establish local community-wide GHG emissions reductions targets that align the City with the statewide targets identified in SB 32 and Executive Order S-03-05.
- Identify goals, policies, and implementation measures to help reduce GHG emissions in all sectors, with particular emphasis on the key sectors of residential buildings, non-residential buildings and transportation.